
VIRUS DETECTION USING DATA MINING TECHINQUES'

Jau-Hwang WANG, Peter S. DENG,

Yi-Shen FAN, Li-Jing JAW,Yu-Ching LIU

Department of Information Management

Central Police University

Tao-Yuan, Taiwan, ROC 333

ABSTRACT

Malicious executables are computer programs,

which may cause damages or inconveniences for

computer users when they are executed. Virus is one of

the major kinds of malicious programs, which attach

themselves to others and usually get executed before the

host programs. They can be easily planted into computer

systems by hackers, or simply down loaded and

executed by naive users while they are browsing the web

or reading E-mails. They often damage its host computer

system, such as destroying data and spoiling system

software when they are executed. Thus, to detect

computer viruses before they get executed is a very

important issue. Current detection methods are mainly

based on pattern scanning algorithms. However, they are

unable to detect unknown viruses. In this paper. an

automatic heuristic method to detect unknown computer

virus based on data mining techniques, namely Decision

Tree and NaCw Buyesian network algorithms, is

proposed and experiments are c e e d to evaluate the

effectiveness the proposed approach.

Keywords: Computer Security, Virus Detection.

Data Miniw, Decision Tree. Nai've

8ayesian Network.

1 . INTRODUCTION
Malicious executables [I] are computer programs,

which may cause damages or inconveniences for

computer users when they are executed by computers.

Malicious codes are very easy to bypass the system

security measures and get planted into computer systems.

The Internet was designed and implemented with the

intension to be used in rather limited environment, such

as academic and research institutes. The security issue

was often of secondary importance. Even after 1990s,

when the networks are widely used by general public,

the Internet is still very vulnerable due to the diversity of

network applications. Consequently, malicious codes

can be easily planted into computer systems by hackers,

or simply down loaded by naive users from the Internet

while browsing the web. Since the execution of

malicious codes can cause damages, the detection of

malicious codes in computer systems has become a very

important issue. Currently, the techniques for malicious

program detection are mainly based on heuristic analysis

and pattern scanning. The heuristic analysis procedures

are very expensive and time consuming. Data mining

has been loosely defined as the process of extracting

interesting patterns from a large amount of database

records. As the data mining technology becomes more

and more matured, it is feasible to develop automatic

program analysis and classification techniques for

malicious program detection.

Computer virus 121 is one of the major kinds of

malicious programs. Computer viruses are small

computer programs, which attach themselves to others

and usually get executed before the host programs.

Commonly, they operate in two phases, namely the

replicate phase and the active phase. In the replicate

phase the viruses reproduce and attach to other programs

but cause no immediate ill effects on the host systems.

Usually they remain benign until some trigger

conditions--such as the passage of a given time or the

occurrence of a specific date--occur, at which the viruses

change to the active phase and often damaging its host

computer system, such as destroying data and spoiling

/ I 0-7803-7882-2/03/$17.0002003 IEEE

system software. Most viruses also include a string of

characters acts as a marker to indicate that a program

has been infected. When a virus replicates, it selects an

executable file and checks to see if the file has been

infected. If the virus finds that the selected file is

uninfected. it insens a copy of itself into that file,

otherwise another program is selected.

Anti-virus scanning is one of the major

countermeasures for computer virus. Virus scanners are

computer programs that examine each piece of computer

software for the mcurrences of virus patterns. Although

virus scanners are good against known virus and other

specific patterns, they won’t work against viruses with

new “breads”. In order to remain effective, the virus

patterns of a scanner must be updated very often.

However, if new virus appears at a rate of several per

day’, keeping the virus patterns up-to-date may not be

practical. Thus, it is of highly demand to develop a

generic scanner, which is able to detect new viruses

without need to update its pattern database. Although it

is proven [Z] that the problem of distinguishing a virus

from a non-virus program is unsolvable in general case,

some generic detection is still possible [4]. It is based on

analyzing a program for a vector of features typical or

not typical for viruses. The process of feature discovery

and possibly together with a set of rules is known as

heuristic approach. Recently more and more researchers

are looking towards heuristic approach as at least a

partial solution to the problem [4,5,6]. This paper

proposed a detection method for unknown computer

virus using data mining algorithms. Feature vectors were

automatically extracted to capture the characteristics of

virus programs. The feature vectors were then used to

train classification models for virus detection.

Experiments were carried out to measure the detection

rates and accuracies of the classification algorithms

proposed.

’ Currently, the number of new viruses created is around
800 to 1000 a month [3].

2 - RELATED WORK
Virus detection methods mainly can be divided

into two categories, namely static analysis and dynamic

analysis [7].

2.1 . Static Analysis

With static analysis, a virus is detected by

analyzing the virus codes, the infected files or records.

Methods in this category include virus scanners,

cryptographic checksum, integrity shells, and printable

string examiners [2,6]. A “Virus Scanner” is a program

that examines system files or records for the occurrences

of virus patterns. Scanners are often used as a bootstrap

check for known viruses. However, they have some

major problems. Firstly, they are only good against

known viruses and not very good against evolutionary or

new “breads” viruses. Secondary, they tend to take a

noticeable amount of time to scan a system or networks

for the patterns. Thirdly, a scanner or its virus pattern

database must be updated very often to remain effective.

The integrity shell and cryptographic checksum

[2,8] are more like virus defense methods than virus

detection methods, and both use redundancy to detect

changes caused by viruses. An integrity shell is a form

of automated fault tolerance and change control, and

often with automatic correction capability. An integrity

shell only interprets a program or command if only that

everything the program or command depends on is

unchanged. otherwise the program or command may be

replaced or forgot according the specification. A

cryptographic checksum is like a fingerprint. The files in

a system are encrypted using a secret key and then a

checksum for each of the encrypted file is created. If a

file is subsequently modified, its fingerprint changes as

well. Since it is very unlikely for the virus to correctly

modify a file and its checksum without knowing the

encryption key, the changes made by virus modification

will be detected using the checksum technique.

Often strings contained in a binary can be used to

distinguish malicious executables from clean benign

programs [6]. Those strings mostly consist of reused

72

code fragments, tile names, author signatures, system

resource information, etc, and have been used by the

anti-malicious executable community as signatures for

malicious programs.

2.2 . Dynamic Analysis

With dynamic analysis, viruses are detected as

they are executed. Methods in this category include

function or system call tracers, machine emulators, logic

analyzers, and network sniffers. Function or system call

tracers employ intrusion detection techniques. “Normal”

and “abnormal” system or function sequences are

supplied to train a classification model, which can then

be used to distinguish abnormal sequence from a normal

one [9]. A machine emulator provides a virtual

environment for program execution. As the suspect virus

codes are executed, the after-effects of the execution are

examined to determine if the program executed is a virus.

Logic analyzer intercepts every instruction of the traced

process to gather the process’s information. Besides that

it may slow down the execution by many magnitude, it

may also produce too much information.

2.3 . Discussion

Dynamic analysis has the advantage of being fast

and accurate. However, it is difficult to traverse all

possible paths through a program code. Most recent

researches on virus detection used static analysis (5.6.81.

Kephart, et al, [S] from 1BM have developed an

automatic method to extract signatures from virus codes.

The extraction method is based on the exhausted

computation to tind the byte sequences which are

statistically most likely to appear in ViNS or infected

codes and least likely to appear in nun-infected codes.

The signatures can then used to scan programs for ViNS

infection. Lai. et al [SI derived common code words

from virus codes and used them to match program files

for virus infection. Schultz, et al 161 derived virus

features by combining system resources used by the

virus (such as dynamically linked library routine calls),

strings extracted by GNU strings command, and byte

sequences which were only found in malicious

executables. The features were then used to train

classifiers for unknown virus detection.

3 I PROPOSE APPROACH
Program analysis can be conducted at least in three

different levels, binary or bit sequence level, machine

instruction or assembly language level, and high-level

language levels. Bit sequence analysis has the advantage

to be able to provide the most detail and exact content of

the programs. However, the information represented in

bit sequence level may provide too much detail

information and not suitable for pattern extraction. This

is similar to the fact that although all text documents are

encoded as ASSCll codes, which however were seldom

used as the semantic units for analysis in information

retrieval [I O] community. Due to the development of

reverse engineering techniques [I I], such as

de-assembler and de-compiler, in recent years i t is

possible to analyze program in assembly language or

even in high-level language levels. We believe that

analyzing malicious programs in higher level will be

able to extract more meaningful patterns for

classification. This research proposed to detect unknown

virus codes using data mining techniques. The steps of

our experiment is as shown in Figure I:

€3 Data Set

c

Figure I . The Experiment Steps

3.1 . Data Sets and Transformation

We downloaded a collection of virus codes at

http://www.cs.columbia.edu/ids.mef/software/. The data

set consists of 3265 malicious binaries and 1001 benign

programs A subset of it, which consists of 125 benign

13

http://www.cs.columbia.edu/ids.mef/software

programs and 875 malicious codes of file infectors, was

dumped to text form. Each program was then

transformed to a vector of the form X=(XI,X2, ..., X.).

where each element is a byte sequence of each

instruction of the program. Two data sets were created,

namely Data Set One, and Data Set Two. Data Set One

consists of the 125 benign and 875 virus programs. Data

Set Two, which consists of 345 of almost equal number

of codes in both benign and virus classes, was randomly

selected from Data Set One.

3.2 . Feature Selection and Extraction

The distinguishing power of each feature is

derived by computing its information p i n based on its

frequencies of appearances in the virus class and benign

class. For example, Data Set One consists of 125 benign

programs and 875 virus codes. The expected

information, E(X), needed to classify the data set is

calculated by the following equation [I21 :

I benigd I benigd I virud I virud
-(- + - 1x1 log 7 1x1

) log? (----) + ___ log, (-
-125 125 -875 875

875+125 875+125 875+125 875+125
- -~

If the data set is further partitioned by feature X,, the

information gain 1(X. Xi) is E(X) - E(XIX:), where

E(XIX,) is equal to: Probability(X is virus I X, = 0) x
Probability(X is benign I Xi = 0) + Probability(X is virus

I Xi = I) x Probability(X is benign I Xi = 1). The

information gains for each feature (which consisting of

the first two bytes of each instruction) are shown in

Table I . For example, the feature “0128”. I(X,”0128”) =

E(X) - E(Xl“0128”) =

124872 -124 124 -872 872
€(X)---x(- IO&(- IO&(-J)

1000 124872 124871’124t872 12487,

-li2.(~l,e(l)+-310g(-r))=aOO033448
1000 1+3 1+3 1+3 1+3

Table I . The Information Gains for Each Feature

Features with negligible information gains can then be

removed to reduce the number of features and speed up

the classification process.

(3) . Model Training and Classification

Each data set is further partitioned at ratio 7:2:1

into training set, testing set, and validating set. Each data

set was fed to the Nai’ve Bayesian and Decision tree

classifiers of Insightful Miner to conduct the

experiments. The experiment is repeated five times

using random sub-sampling holdout method [121 and the

detection rates and accuracies obtained from the five

iterations are averaged to obtained the experiment

results.

(4) ~ Notations and Evaluation Measures

The following measures [121 are used to evaluate

the correctness of the classification models for unknown

virus detection:

A. T r u e Positive (TP) : Number of programs

correctly classified as virus codes.

B. T rue Negative (TN) : Number of programs

74

correctly classified as benign programs.

C. False Positive (FP) : Number of benign

programs incorrectly classified as virus codes.

D. False Negative (FN) : Number of virus codes

misclassitied as benign programs.

TP
TP + FN

E. Detection Rate (DR) =

FP
T N i F P '

F. False Positive Rate (FPR) =

TP f TN
TP+TN+ F P i FN

G. Accuracy (ACY) =

4 ~ EXPERIMENT RESULTS

(I) . Experiment Results from Data Set One

Two experiments were conducted on this data set.

Firstly, the first byte (mainly the op-code) of each

instruction was used as an element for the feature vector.

Secondary, both the first two bytes (mainly the op-code

and the first operand) of each instruction were taken as

an element. The experiment results are shown in Table 2.

The results show that the unknown virus detection rates

for the Decision Tree and Naive Bayesian classifiers are

93.2% and 76.1%. with accuracies of 89.5% and 73.3%

respectively, when each feature element consists of only

the op-code of each instruction. The unknown virus

detection rates for the Decision Tree and Naive Bayesian

classifiers raise to 94.3% and 80.7%, and accuracies also

raise to 91.4% and 77.1%. when the op-code and the

first operand are used as a feature element. We may

conclude that when each feature contains more

information, the classifiers perform better. We also

observed that the Decision Tree algorithm outperforms

the Naive Bayesian network algorithm both in detection

rate, false positive rate, and accuracy.

Table 2. Experiment Results from the Data Set One

ilgorithm!

Nai've

Bayesian

Decision

Tree

(2) . Experiment Results from Data Set Two

We observed that when data set consists of almost

equally mix of benign and virus programs, the detection

rates and accuracies of both classifiers dropped

significantly. In certain case the accuracy even dropped

up to 25%. The false positive rates also dropped to some

extent. The cause of this phenomenon yet needs to be

further studied. However. we can conclude that it is

important to have a good mix of virus and benign

programs to train the classification models, since it

significantly affects the effectiveness of both classifiers.

Table 3: Experiment Results from Data Set Two

L

5 ~ CONCLUSIONS
Anti-virus scanning is one of the major

countermeasures for computer virus detection. However.

they mainly rely on human experts to extract the ViNS

75

patterns and are only good for detecting known viruses,

and often not suitable for detecting evolutional and

unknown viruses. This research proposed a data mining

approach to automatically extract virus features from

virus programs and used the features to train

classification model for unknown virus detection.

Experiments were conducted to evaluate the proposed

method. The experiment results show that the detection

rates for the Decision Tree and Naive Bayesian

classifiers are 94.3% and 80.790, and the accuracies are

91.4% and 77.1%. respectively, which are very

promising. In general, the Decision Tree algorithm

outperforms the Naive Bayesian network classifier.

Furthermore, when each feature element contains more

information, both the classifiers perform better. It is also

found that a good mix of virus and benign data set to

train the classification models has significant effect on

the effectiveness of both classifiers. However, to find a

good mix is still opened for future work.

REFERENCES

[I] Stephen Cass, “Anatomy of Malice”, IEEE

6

SPECTRUM. November 2001.

[2] Fred Cohen, A Short Course on Computer Viruses,

2“’edition. John Wiley & Sons, Inc. 1994.

[3] George Lawton, “Virus Wars : Fewer Attacks, New

Threats”, IEEE Computer, Vol. 35, No. 12, 2002.

[4].Dmitry 0. Gryaznov, “Scanners of The Year 2000

Heuristics”.

http://vx.netlux.org/textslhtmVscan2000.html

151 Jeffrey 0. Kephart and William C. Arnold,

“Automatic Extraction of Computer Virus Signatures”,

Proceedings of the 4th Virus Bulletin International

Conference. 1994.

[6] Matthew G. Schultz, Eleazar Eskin, Erez Zadok and

Salvatore I. Stolfo, “Data Mining Methods for

Detection of New Malicious Executables”, The 2001

IEEE Symposium on Security and Privacy, Oakland,

CA. May 2001.

[7] Wietse Venema, “Strangers in the Night”, Dr. Dobb’s

Journal, November, 2000,

http://www.ddj.com/documents/s=879/ddjOO I lg/OO1 I

g.htm

181, Zone-Chang Lai and Bing-Shin Tsai,

“Codeword-based Virus Detection Using Virus

Features.” Proceedings of 2001 IPPR Conf on

Cornpurer Version, Graphics and Image Processing.

Aug. 2001, Ping-Ton, Taiwan.

[9] Wenke Lee and Salvatore 1. Stolfo. “Data Mining

Approaches for Intrusion Detection”,

http://www.cs.columbia.edu/-saUhpapersR/us

enix.html.

[IO] Gerard Salton, Automatic Texr Processing: The

Transformation, Analysis, and Retrieval of

Information by Computer, Addison Wesley, 1989.

[I I] Cristina Cifuentes. Reverse Compilation Techniques,

PhD. Dissertation, Queensland University of

Technology, Department of Computer Science, 1994.

1121 Jiawei Han and Micheline Kamber, Data Mining:

Concepts and Techniques, Morgan Kaufmann

Publishers, 2001

1131 Roger A. Grimes, Malicious Mobile Code - Virus

Prorection for windows, I ” edition, O’Reilly &

Associates, Inc., 2001.

This research is partially supported by NSC, ROC, i

under grand no. 92-2213-E-015-006

76

http://vx.netlux.org/textslhtmVscan2000.html
http://www.ddj.com/documents/s=879/ddjOO
http://www.cs.columbia.edu/-saUhpapersR/us

