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ABSTRACT 

Malicious executables are computer programs, 

which may cause damages or inconveniences for 

computer users when they are executed. Virus is one of 

the major kinds of malicious programs, which attach 

themselves to others and usually get executed before the 

host programs. They can be easily planted into computer 

systems by hackers, or simply down loaded and 

executed by naive users while they are browsing the web 

or reading E-mails. They often damage its host computer 

system, such as destroying data and spoiling system 

software when they are executed. Thus, to detect 

computer viruses before they get executed is a very 

important issue. Current detection methods are mainly 

based on pattern scanning algorithms. However, they are 

unable to detect unknown viruses. In this paper. an 

automatic heuristic method to detect unknown computer 

virus based on data mining techniques, namely Decision 

Tree and NaCw Buyesian network algorithms, is 

proposed and experiments are c e e d  to evaluate the 

effectiveness the proposed approach. 
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1 . INTRODUCTION 
Malicious executables [ I ]  are computer programs, 

which may cause damages or inconveniences for 

computer users when they are executed by computers. 

Malicious codes are very easy to bypass the system 

security measures and get planted into computer systems. 

The Internet was designed and implemented with the 

intension to be used in rather limited environment, such 

as academic and research institutes. The security issue 

was often of secondary importance. Even after 1990s, 

when the networks are widely used by general public, 

the Internet is still very vulnerable due to the diversity of 

network applications. Consequently, malicious codes 

can be easily planted into computer systems by hackers, 

or simply down loaded by naive users from the Internet 

while browsing the web. Since the execution of 

malicious codes can cause damages, the detection of 

malicious codes in computer systems has become a very 

important issue. Currently, the techniques for malicious 

program detection are mainly based on heuristic analysis 

and pattern scanning. The heuristic analysis procedures 

are very expensive and time consuming. Data mining 

has been loosely defined as the process of extracting 

interesting patterns from a large amount of database 

records. As the data mining technology becomes more 

and more matured, it is feasible to develop automatic 

program analysis and classification techniques for 

malicious program detection. 

Computer virus 121 is one of the major kinds of 

malicious programs. Computer viruses are small 

computer programs, which attach themselves to others 

and usually get executed before the host programs. 

Commonly, they operate in two phases, namely the 

replicate phase and the active phase. In the replicate 

phase the viruses reproduce and attach to other programs 

but cause no immediate ill effects on the host systems. 

Usually they remain benign until some trigger 

conditions--such as the passage of a given time or the 

occurrence of a specific date--occur, at which the viruses 

change to the active phase and often damaging its host 

computer system, such as destroying data and spoiling 
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system software. Most viruses also include a string of 

characters acts as a marker to indicate that a program 

has been infected. When a virus replicates, it selects an 

executable file and checks to see if the file has been 

infected. If the virus finds that the selected file is 

uninfected. it insens a copy of itself into that file, 

otherwise another program is selected. 

Anti-virus scanning is one of the major 

countermeasures for computer virus. Virus scanners are 

computer programs that examine each piece of computer 

software for the mcurrences of virus patterns. Although 

virus scanners are good against known virus and other 

specific patterns, they won’t work against viruses with 

new “breads”. In order to remain effective, the virus 

patterns of a scanner must be updated very often. 

However, if new virus appears at a rate of several per 

day’, keeping the virus patterns up-to-date may not be 

practical. Thus, it is of highly demand to develop a 

generic scanner, which is able to detect new viruses 

without need to update its pattern database. Although it 

is proven [Z] that the problem of distinguishing a virus 

from a non-virus program is unsolvable in general case, 

some generic detection is still possible [4]. It is based on 

analyzing a program for a vector of features typical or 

not typical for viruses. The process of feature discovery 

and possibly together with a set of rules is known as 

heuristic approach. Recently more and more researchers 

are looking towards heuristic approach as  at least a 

partial solution to the problem [4,5,6]. This paper 

proposed a detection method for unknown computer 

virus using data mining algorithms. Feature vectors were 

automatically extracted to capture the characteristics of 

virus programs. The feature vectors were then used to 

train classification models for virus detection. 

Experiments were carried out to measure the detection 

rates and accuracies of the classification algorithms 

proposed. 

’ Currently, the number of new viruses created is around 
800 to 1000 a month [3]. 

2 - RELATED WORK 
Virus detection methods mainly can be divided 

into two categories, namely static analysis and dynamic 

analysis [7]. 

2.1 . Static Analysis 

With static analysis, a virus is detected by 

analyzing the virus codes, the infected files or records. 

Methods in this category include virus scanners, 

cryptographic checksum,  integrity shells, and printable 

string examiners [2,6]. A “Virus Scanner” is a program 

that examines system files or records for the occurrences 

of virus patterns. Scanners are often used as a bootstrap 

check for known viruses. However, they have some 

major problems. Firstly, they are only good against 

known viruses and not very good against evolutionary or 

new “breads” viruses. Secondary, they tend to take a 

noticeable amount of time to scan a system or networks 

for the patterns. Thirdly, a scanner or its virus pattern 

database must be updated very often to remain effective. 

The integrity shell and cryptographic checksum 

[2,8] are more like virus defense methods than virus 

detection methods, and both use redundancy to detect 

changes caused by viruses. An integrity shell is a form 

of automated fault tolerance and change control, and 

often with automatic correction capability. An integrity 

shell only interprets a program or command if only that 

everything the program or command depends on is 

unchanged. otherwise the program or command may be 

replaced or  forgot according the specification. A 

cryptographic checksum is like a fingerprint. The files in 

a system are encrypted using a secret key and then a 

checksum for each of the encrypted file is created. If a 

file is subsequently modified, its fingerprint changes as 

well. Since it is very unlikely for the virus to correctly 

modify a file and its checksum without knowing the 

encryption key, the changes made by virus modification 

will be detected using the checksum technique. 

Often strings contained in a binary can be used to 

distinguish malicious executables from clean benign 

programs [6]. Those strings mostly consist of reused 
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code fragments, tile names, author signatures, system 

resource information, etc, and have been used by the 

anti-malicious executable community as signatures for 

malicious programs. 

2.2 . Dynamic Analysis 

With dynamic analysis, viruses are detected as 

they are executed. Methods in this category include 

function or system call tracers, machine emulators, logic 

analyzers, and network sniffers. Function or system call 

tracers employ intrusion detection techniques. “Normal” 

and “abnormal” system or function sequences are 

supplied to train a classification model, which can then 

be used to distinguish abnormal sequence from a normal 

one [9]. A machine emulator provides a virtual 

environment for program execution. As the suspect virus 

codes are executed, the after-effects of the execution are 

examined to determine if the program executed is a virus. 

Logic analyzer intercepts every instruction of the traced 

process to gather the process’s information. Besides that 

it may slow down the execution by many magnitude, it 

may also produce too much information. 

2.3 . Discussion 

Dynamic analysis has the advantage of being fast 

and accurate. However, it is difficult to traverse all 

possible paths through a program code. Most recent 

researches on virus detection used static analysis (5.6.81. 

Kephart, et al, [ S ]  from 1BM have developed an 

automatic method to extract signatures from virus codes. 

The extraction method is based on the exhausted 

computation to tind the byte sequences which are 

statistically most likely to appear in ViNS or infected 

codes and least likely to appear in nun-infected codes. 

The signatures can then used to scan programs for ViNS 

infection. Lai. et al [SI derived common code words 

from virus codes and used them to match program files 

for virus infection. Schultz, et al 161 derived virus 

features by combining system resources used by the 

virus (such as dynamically linked library routine calls), 

strings extracted by GNU strings command, and byte 

sequences which were only found in malicious 

executables. The features were then used to train 

classifiers for unknown virus detection. 

3 I PROPOSE APPROACH 
Program analysis can be conducted at least in three 

different levels, binary or bit sequence level, machine 

instruction or assembly language level, and high-level 

language levels. Bit sequence analysis has the advantage 

to be able to provide the most detail and exact content of 

the programs. However, the information represented in 

bit sequence level may provide too much detail 

information and not suitable for pattern extraction. This 

is similar to the fact that although all text documents are 

encoded as ASSCll codes, which however were seldom 

used as the semantic units for analysis in information 

retrieval [ I O ]  community. Due to the development of 

reverse engineering techniques [ I  I], such as 

de-assembler and de-compiler, in recent years i t  is 

possible to analyze program in assembly language or 

even in high-level language levels. We believe that 

analyzing malicious programs in higher level will be 

able to extract more meaningful patterns for 

classification. This research proposed to detect unknown 

virus codes using data mining techniques. The steps of 

our experiment is as shown in Figure I: 

€3 Data Set 

c 

Figure I .  The Experiment Steps 

3.1 . Data Sets and Transformation 

We downloaded a collection of virus codes at 

http://www.cs.columbia.edu/ids.mef/software/. The data 

set consists of 3265 malicious binaries and 1001 benign 

programs A subset of it, which consists of 125 benign 
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programs and 875 malicious codes of file infectors, was 

dumped to text form. Each program was then 

transformed to a vector of the form X=(XI,X2, ..., X.). 

where each element is a byte sequence of each 

instruction of the program. Two data sets were created, 

namely Data Set One, and Data Set Two. Data Set One 

consists of the 125 benign and 875 virus programs. Data 

Set Two, which consists of 345 of almost equal number 

of codes in both benign and virus classes, was randomly 

selected from Data Set One. 

3.2 . Feature Selection and Extraction 

The distinguishing power of each feature is 

derived by computing its information p i n  based on its 

frequencies of appearances in the virus class and benign 

class. For example, Data Set One consists of 125 benign 

programs and 875 virus codes. The expected 

information, E(X), needed to classify the data set is 

calculated by the following equation [I21 : 

I benigd I benigd I virud I virud 
-(- + -  1x1 log 7 1x1 

) log? (----) + ___ log, (- 
-125 125 -875 875 

875+125 875+125 875+125 875+125 
- -~ 

If the data set is further partitioned by feature X,, the 

information gain 1(X. Xi) is E(X) - E(XIX:), where 

E(XIX,) is equal to: Probability(X is virus I X, = 0) x 
Probability(X is benign I Xi = 0) + Probability(X is virus 

I Xi = I )  x Probability(X is benign I Xi = 1). The 

information gains for each feature (which consisting of 

the first two bytes of each instruction) are shown in 

Table I .  For example, the feature “0128”. I(X,”0128”) = 

E(X) - E(Xl“0128”) = 

124872 -124 124 -872 872 
€(X)---x(- IO&(- IO&(-J) 

1000 124872 124871’124t872 12487, 

-li2.(~l,e(l)+-310g(-r))=aOO033448 
1000 1+3 1+3 1+3 1+3 

Table I .  The Information Gains for Each Feature 

Features with negligible information gains can then be 

removed to reduce the number of features and speed up 

the classification process. 

(3) . Model Training and Classification 

Each data set is further partitioned at ratio 7:2:1 

into training set, testing set, and validating set. Each data 

set was fed to the Nai’ve Bayesian and Decision tree 

classifiers of Insightful Miner to conduct the 

experiments. The experiment is repeated five times 

using random sub-sampling holdout method [ 121 and the 

detection rates and accuracies obtained from the five 

iterations are averaged to obtained the experiment 

results. 

(4) ~ Notations and Evaluation Measures 

The following measures [ 121 are used to evaluate 

the correctness of the classification models for unknown 

virus detection: 

A. T r u e  Positive (TP) : Number of programs 

correctly classified as virus codes. 

B. T rue  Negative (TN) : Number of programs 
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correctly classified as benign programs. 

C. False Positive (FP) : Number of benign 

programs incorrectly classified as virus codes. 

D. False Negative (FN) : Number of virus codes 

misclassitied as benign programs. 

TP 
TP + FN 

E. Detection Rate (DR) = 

FP 
T N i F P '  

F. False Positive Rate (FPR) = 

TP f TN 
TP+TN+ F P i  FN 

G. Accuracy (ACY) = 

4 ~ EXPERIMENT RESULTS 

( I )  . Experiment Results from Data Set One 

Two experiments were conducted on this data set. 

Firstly, the first byte (mainly the op-code) of each 

instruction was used as an element for the feature vector. 

Secondary, both the first two bytes (mainly the op-code 

and the first operand) of each instruction were taken as 

an element. The experiment results are shown in Table 2. 

The results show that the unknown virus detection rates 

for the Decision Tree and Naive Bayesian classifiers are 

93.2% and 76.1%. with accuracies of 89.5% and 73.3% 

respectively, when each feature element consists of only 

the op-code of each instruction. The unknown virus 

detection rates for the Decision Tree and Naive Bayesian 

classifiers raise to 94.3% and 80.7%, and accuracies also 

raise to 91.4% and 77.1%. when the op-code and the 

first operand are used as a feature element. We may 

conclude that when each feature contains more 

information, the classifiers perform better. We also 

observed that the Decision Tree algorithm outperforms 

the Naive Bayesian network algorithm both in detection 

rate, false positive rate, and accuracy. 

Table 2. Experiment Results from the Data Set One 

ilgorithm! 

Nai've 

Bayesian 

Decision 

Tree 

(2) . Experiment Results from Data Set Two 

We observed that when data set consists of almost 

equally mix of benign and virus programs, the detection 

rates and accuracies of both classifiers dropped 

significantly. In certain case the accuracy even dropped 

up to 25%. The false positive rates also dropped to some 

extent. The cause of this phenomenon yet needs to be 

further studied. However. we can conclude that it is 

important to have a good mix of virus and benign 

programs to train the classification models, since it 

significantly affects the effectiveness of both classifiers. 

Table 3: Experiment Results from Data Set Two 

L 

5 ~ CONCLUSIONS 
Anti-virus scanning is one of the major 

countermeasures for computer virus detection. However. 

they mainly rely on human experts to extract the ViNS 
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patterns and are only good for detecting known viruses, 

and often not suitable for detecting evolutional and 

unknown viruses. This research proposed a data mining 

approach to automatically extract virus features from 

virus programs and used the features to train 

classification model for unknown virus detection. 

Experiments were conducted to evaluate the proposed 

method. The experiment results show that the detection 

rates for the Decision Tree and Naive Bayesian 

classifiers are 94.3% and 80.790, and the accuracies are 

91.4% and 77.1%. respectively, which are very 

promising. In general, the Decision Tree algorithm 

outperforms the Naive Bayesian network classifier. 

Furthermore, when each feature element contains more 

information, both the classifiers perform better. It is also 

found that a good mix of virus and benign data set to 

train the classification models has significant effect on 

the effectiveness of both classifiers. However, to find a 

good mix is still opened for future work. 
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